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Abstract: The microarray data of ovarian cancer consists of tens of thousands of genes on a genomic scale. To avoid higher
computational complexity, it needs gene selection to find the gene subsets that are able to classify ovarian cancer. Most of gene
selections use traditional statistics or data mining techniques to build the model. However, traditional statistics have no consideration
about the variable gene selection and block effect. Data mining techniques may suffer the problem of parameter settings. Therefore,
this paper applies scatter search to obtain suitable parameter settings for support vector machine and decision tree. Additionally, it
selects a subset of beneficial genes without reducing the classification accuracy, and provides the decision rules for medical experts
and biologists to evaluate the block effect of selected genes. In order to evaluate the proposed algorithm, the microarray data of
ovarian cancer collected from China Medical University are used as the source datasets. From experimental results, it shows that the
proposed algorithm can reduce unnecessary genes, and significantly improve the classification accuracy for ovarian cancer.
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1. Introduction

Ovarian cancer is one of the gynecological cancer
deaths for women in the United States [1-3]. It is
important to early detect ovarian cancer, because 70% of
women with the epithelial ovarian cancer are not
diagnosed until the disease is spread to upper abdomen
[4]. Recently, microarray technologies have been
developed that can be used to simultaneously assess the
level of expression of genes [5-10]. Then, there is
increasing interest in the emphasis of gene selection and
cancer classification for microarray data [11-14]. The
microarray data of ovarian cancer contains genes with
tens of thousands of dimension and could harm the
performance of the classification accuracy for the
formation of decision rules. Thus, the gene selection is an
important issue for evaluating the classification accuracy
of microarray data. Several studies have been used to
select genes from microarray data such as correlation
methods, nonparametric scoring approach, Bayesian
variable selection approach, and machine learning
methods [15-30]. For above literature, they have not
simultaneously considered the gene selection and the
optimal parameter setting for the microarray data of
ovarian cancer. Furthermore, there is no systematic
approach for achieving a better insight into global gene
expression analysis. In previous study, author has
proposed an integrated algorithm for gene selection and
classification applied to microarray data of ovarian cancer
[31]. Its result can interpret the variable gene selection
and block effect in microarray data, but there is no
decision rule for biological interpretations. In this paper,
an improved algorithm with gene selection and decision

rules for ovarian cancer is proposed. The real microarray
data of ovarian cancer is obtained from China Medical
University Hospital. The purpose of this study is to apply
scatter search (SS) to perform gene selection and the
parameter determinations for support vector machine
(SVM) and decision tree (DT), respectively. Furthermore,
the decision rules of this study can be obtained as
guidance for biologists.

The remainder of this paper is organized as follows.
Section 2 reviews SVM, SS and DT. Section 3 then
introduces the proposed algorithm. Simulation results are
compared with other existing approaches in Section 4.
Conclusions are finally drawn in Section 5.

2. Introduction of Support Vector Machine,
Scatter Search and Decision Tree

The proposed algorithm is based on support vector
machine, scatter search and decision tree. In this section,
we briefly describe the basic concepts of support vector
machine, scatter search and decision tree.

2.1 Support Vector Machine (SVM)

SVM is proposed by Vapnik and successively applied
to many applications [32-35]. Let 1 1( , ), ...,x y
( , )m mx y { 1, 1}X    be a set of training data, where
X represents some nonempty set from which the pattern xi,
and yi are called the target  1, 1iy    . The objective

of SVM is to find an optimal separating hyper-plane with
the maximum margin (w) and a real value b for
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classification of data. Consider the class of hyper-planes
in the dot product space H. The parameters w and b are
described as follows:
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A linear separation is obtained if a hyper-plane that
satisfies Eq. (1) exists. The separating hyper-planes
include one optimal separating hyper-plane (OSH) which
has the largest distance between two support vector
points on its two sides. The minimal distance to OSH can
be derived from Eq. (2).
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The margin of a separating hyper-plane can be regarded
as the hyper-plane’s generalization ability, and the OSH
has the maximal margin among separating hyper-planes.
Let  denote 1( , , ).m  Combining Lagrange’s
polynomial (in the order of m) with Eq. (3) produces the
following equation:
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Where 0i  denotes the Lagrange multiplier and C is
the penalty parameter. Given a vector which satisfies Eq.
(4) in maximization, the OSH can be written as follows:

1

m

i i i
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w y x


 (6)

Where the support vector points must satisfy 0i  and
Eq. (1).

In practice, the data may not be linearly separable and
could be mapped to a higher dimensional feature space. It
means that SVM will map the data into a higher
dimensional space for classification if the data cannot be
classified explicitly in the current dimensional space. The
input data are mapped to a higher dimensional feature
space by plotting a nonlinear curve. The OSH is built into
the feature space. The feature space vectors ,i jx x are

constructed in terms of the kernel k, evaluated on input

patterns ,i jx x where  , ,i j i jk x x x x . The nonlinear

SVM can map the input data into a high-dimension
feature space via a mapping function  x . By virtue of

constructing the feature space, we can substitute  x
into Eq. (4) and have the following:
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Given a kernel function  , ( ), ( )k x y x y  , Eq (7) is

showed as follow:
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Several kernel functions help the SVM in finding the
optimal solution. The most frequently used such
functions are the polynomial kernel, sigmoid kernel and
radial basis kernel function (RBF) [34]. The RBF

  2
, exp( )i j i jk x x x x   is the most often used in

general cases, since it can classify multi-dimensional data
unlike a linear kernel function. Furthermore, the RBF
needs fewer parameters than the polynomial kernel. The
two major parameters of the RBF ( C and  ) applied in
SVM have to be set appropriately. The classification
accuracy is very high in the training stage and very low in
the testing stage if C is set too large. The partitioning
outcome in the feature space is dominated by the
parameter  . An excessive value for parameter  may
lead to over-fitting, while a disproportionately small
value may result in under-fitting [35]. In this paper,
scatter search will be conducted to find the best values for
these two parameters, C and  .

2.2 Scatter Search (SS)

Scatter search (SS), proposed by Glover in 1977, is an
evolutionary approach that starts with a collection of
reference solutions obtained by applying preliminary
heuristic processes [36]. SS uses strategies for search
diversification and intensification based on formulations
for combining decision rules and problem constraints.
Glover presented a simplification of the description for
SS method known as SS template in 1998. It is
considered as a milestone in SS literature and has
regarded as the main reference for most of the SS
implementations up to date [37]. It has proved effective
in a variety of optimization problems and has shown
potential for solving various applications [38-39].

Generally, there are five principal components in
SS. (1) The diversification generation method (DGM)
generates trial solutions that satisfy a critical level of
diversity by using an arbitrary trial solution as an input.
(2) The improvement method (IM), a local optimizer,
transforms trial solutions obtained from DGM into
enhanced feasible trial solutions. (3) The reference set
update method (RSUM) builds and maintains a reference
set consisting of high-quality and diverse solutions. The
reference set is the basis for creating new combined
solutions. (4) The subset generation method (SGM) is
conducted to the reference set and then produces a subset
of solutions as a basis for creating combined solutions. (5)
The solution combination method (SCM) transforms a
given subset of solutions produced by the SGM into one
or more combined new solutions. Since above
components can be implemented in a variety of ways, SS
is very adaptable to solve different problems.
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2.3 Decision Tree (DT)

Decision tree is an important area of artificial
intelligence. It is a rule induction approach that utilizes a
divide-and-conquer strategy to recursively partition the
data set into smaller subdivisions by generating a
tree-like structure [40-45]. This tree-like structure is
composed of a root node (formed from all of the data), a
set of internal nodes (splits), and a set of terminal nodes
(leaves). The C4.5 rule is one of the primary approaches
in DT [46]. There are two major phases for C4.5. One is
growth phase and the other is pruning phase [43]. For the
growth phase, C4.5 uses an information entropy
evaluation function as the selection criteria [44]. The
entropy evaluation function is calculated as follows.
Step 1: Calculate Info(S) to identify the class in the
training set S.

 － 2
1

( )

( , / ) log ( , / )
x

k

i i
i
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freq C S S freq C S S
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where S is the number of cases in the training set. Ci

is a class, i=1,2,...,k. k is the number of classes
and ( , )ifreq C S is the number of cases included in Ci..
Step 2: Calculate the expected information
value ( )xInfo S for feature X to the partition S.
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where L is the number of outputs for feature X, Si is a
subset of S corresponding to the ith output and iS is the

number of cases of the subset Si.
Step 3: Calculate the information gained after partitioning
according to feature X.

( ) ( ) ( )xGain X Info S Info S  (11)
Step 4: Calculate the partition information value

( )SplitInfo X acquired for S partitioned into L subsets.
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Step 5: Calculate the gain ratio of Gain(X) over
SplitInfo(X).

( ) ( ) / ( )GainRatio X Gain X SplitInfo X (13)
Where the GainRatio(X) compensates the weak point of
Gain(X), which represents the quantity of information
provided by X in the training set. Therefore, the feature
with the highest GainRatio(X) is taken as the root of the
decision tree. The pruning phase aims to avoid
over-fitting the training data for the generated DT. In the
pruning phase, the most difficult task is to get the balance
between accuracy and simplicity. Unfortunately, the
minimum cases for the leaf (M) and the pruning
confidence factor (CF) are varied with different cases.
The decision of these two parameters becomes an
optimization problem. In this paper, we will use scatter
search to find the best values for these two parameters, M
and CF.

3. The Proposed Algorithm

Figure 1: The flow chart of the proposed algorithm

In this paper, the datasets of microarray data of
ovarian cancer were collected from China Medical
University Hospital. The ovarian tissues, vaginal tissues,
cervical tissues and myometrium of patients include 6
benign ovarian tumors (BOT), 10 ovarian tumors (OVT)
and 25 ovarian cancers (OVCA). The 9,600 human
cDNA clones in a sequence-verified human cDNA library
were a kind gift from the National Health Research
Institute of Taiwan. They were originally obtained from
the Minimum Information About a Microarray
Experiment (MIAME) consortium libraries through its
distributor (Research Genetics, Huntsville, AL) [14]. To
avoid higher computational complexity, it needs to select
the most likely differentially expressed genes to explain
the effects of ovarian cancer. Additionally, the microarray
data with highly correlated genes will significantly
increase the classification accuracy by selecting genes.

In this paper, an improved algorithm with gene
selection and decision rules for ovarian cancer is
proposed. It presents a novel algorithm based on SS that

Initialize the microarray data of
ovarian cancer

Start

Output the classification accuracy,
selected genes and decision rules

No

End

Use SS and SVM to select genes
and to classify cancer tissues

Meet the
termination
criterion?

Use SS and DT to build the decision
rules from the selected genes

Evaluate the classification accuracy

Yes
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provides the best parameter settings for the DT and SVM,
and finds the beneficial subset of genes to maximize the
classification accuracy for the microarray data of ovarian
cancer. The flow chart of the proposed algorithm is
shown in Figure 1. In the proposed algorithm, SVM is
first applied to select genes for increasing the
classification accuracy for the microarray data of ovarian
cancer. Thereafter, DT is used to learn rules from the
training data set. In SVM and DT, SS is conducted to
parameter determination. To implement SS, the
population P with Psize solutions is uniformly generated in
the diversification generation method. In reference set
update method, the size of the reference set is

RefSet1 2b b b   . Construction of the initial

reference set starts with selecting b1 best solutions
(solutions with the highest classification accuracy) from
P, and these solutions are added to RefSet. For each
solution in the P-RefSet, the minimum Euclidean distance
to the solutions in RefSet is calculated. The solution with
the maximum of the minimum distances is selected, and
this solution is then added to RefSet. Thus the minimum
distances are updated accordingly. The resulting
reference set has b1 high-quality solutions and b2 diverse
solutions. In subset generation method, the size of subsets
is set to 2; that is, only subsets consisting of all pair-wise
combinations of solutions in RefSet are considered. In
solution combination method, the method employed
consists of finding linear combinations of reference
solutions. Each combination of two reference solutions,
denoted as 'X and "X , are employed to create three
trial solutions. These three trial solutions are
(1) 'X X d  , (2) 'X X d  , and (3) "X X d  ,
where " '( ) / 2d u X X  and u is a random number
with values within [0,1]. In the hybrid process of SS and
SVM, n variable followed with two variables, C and  ,
must be established if n number of genes are selected,
The value of n variables ranges between 0 and 1. The
corresponding gene is not selected if its value is less than
or equal to 0.5. Conversely, the corresponding gene is
selected if its value is greater than 0.5. For the hybrid
process of SS and DT, two decision variables, designated
M and CF, are necessary. SS will set the proper
parameters of M and CF to increase the classification
accuracy. The proposed algorithm is repeated until the
stop criterion has met. Thereafter, the classification
accuracy, selected genes, and extracted decision rules are
reported.

4. Simulation Results

In simulation, we need to identify the range of
parameter for SVM and DT. The searching range of
parameter C of the SVM is between 0.01 and 50,000,
while the searching range of parameter  of the SVM is
between 0.0001 and 50. Meanwhile, the searching range
of the parameter M of DT is between 2 and 10, and the
searching range of parameter CF of DT is between 0.01
and 0.5 [47].

Table 1: The simulation results for various approaches

The hybrid
process of
SVM and

SS

The hybrid
process of
SVM and

DT

SVM
The

proposed
algorithm

Classification
accuracy% 92.8571% 85.714% 78.571% 96.4376%

The number of
selected genes 12 14 15 5

Table 2: The obtained 5 rules of DT from the proposed algorithm
Rule
number

Rule Classification

1 “peptidylprolyl isomerase D
(cyclophilin D)”<= -0.7378 and
“matrix metalloproteinase 2 (gelatinase
A, 72kDa gelatinase, 72kDa type IV
collagenase)”<= -0.67

BOT

2 “cadherin 4, type 1, R-cadherin
(retinal)”<= 1.59
and “matrix metalloproteinase 2
(gelatinase A, 72kDa gelatinase,
72kDa type IV collagenase)”> -0.67

OVT

3 “fibronectin 1”> -0.38 and “cadherin
4, type 1, R-cadherin (retinal)”<= 1.59

OVT

4 “fibronectin”<= -0.38 and “cadherin
4, type 1, R-cadherin (retinal)”<= 1.59
and “fibronectin”<= -0.38

OVCA

5 “peptidylprolyl isomerase D
(cyclophilin D)”> -0.7378 and “matrix
metalloproteinase 2 (gelatinase A,
72kDa gelatinase, 72kDa type IV
collagenase)”<= -0.67 and“matrix
metalloproteinase 2 (gelatinase A,
72kDa gelatinase, 72kDa type IV
collagenase)”> -0.73

OVCA

To verify the performance of the proposed algorithm,
various approaches include the proposed algorithm, the
hybrid process of SVM and SS, the hybrid process of
SVM and DT, and SVM are used to compare the
simulation results. For fair comparisons, the same values
of parameters are used for these approaches. Simulations
are performed to see which approaches can find the best
classification accuracy with selected genes. The k-fold
approach is used to evaluate the classification accuracy
for the microarray data of ovarian cancer obtained form
China Medical University [48]. This study set k as 3; that
is, the data was divided into three portions. Two portions
of data are retrieved as training data and the other one is
used for testing data. The simulation results are shown in
Tables 1. As shown in Table 1, the classification accuracy
for the proposed algorithm is 96.4376%, and it
outperforms other approaches. The proposed algorithm
has the minimal selected genes among these compared
approaches. Five selected genes are extracted from 9600
genes for the proposed algorithm. These genes are
“peptidylprolyl isomerase D (cyclophilin D)”,
“fibronectin 1 (4390)”, “cadherin 4, type 1, R-cadherin
(retinal)”, “matrix metalloproteinase 2 (gelatinase A,
72kDa gelatinase, 72kDa type IV collagenase)”, “protein
tyrosine phosphatase, receptor type, K”. For the hybrid
process of SVM and SS, the hybrid process of SVM and
DT, and SVM, each approach also has good classification
accuracy, but the process among them is kind of black
box. Biologists cannot take these results into their future
judgments. In the proposed algorithm, five rules provided
by DT are shown in Table 2. From Table 2, it can be
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observed the relation between the selected genes for
ovarian cancer.

5. Conclusions

This study gives evidence for the improvement of
gene selection and decision rules for ovarian cancer. In
this paper, the process of SVM, SS and DT are hybridized
to select genes, and the parameters for SVM and DT are
automatically achieved. The proposed algorithm can
classify the cancer tissues for microarray data of ovarian
cancer by the selected genes. Additionally, the obtained
gene markers are performed to classify cancer tissues by
the improved fuzzy model. It has demonstrated that five
selected genes can be obtained through the proposed
algorithm. Additionally, the structure of tree which is
obtained from the proposed DT architecture, medical
experts and biologists can analyze the decision rules and
thus make a further evaluation. Results of the
experiments show that the proposed algorithm is effective
in searching for the beneficial subset of genes and
decision rules.
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